martes, 8 de octubre de 2019

Representación matricial



En las aplicaciones de diseño y de creación de imágenes, realizamos traslaciones, rotaciones y escalaciones para ajustar los componentes de la imagen en sus posiciones apropiadas. En este tema consideramos cómo se pueden volver a formular las representaciones de la matriz de modo que se pueden procesar de manera eficiente esas secuencias de transformación. Es posible expresar cada una de las transformaciones básicas en la forma de matriz general con las posiciones de coordenadas P y P’ representadas como columnas de vector.
La creación de productos de matrices de transformación a menudo se conoce como concatenación o composición de matrices.



·                     Traslaciones

Se se aplican dos vectores de traslación sucesivos (tx1, t y1) y (tx2 , t  y2 ) en la posición de coordenadas P, la localización transformada final P, la localización transformada final P’ se calcula como: P'=T(t x2,t2)·T(tx1,ty1)·P}{=T(tx2, 2)·T(t x1,t y1)}{·P
Donde se representan P y P’ como vectores de columna de coordenadas homogéneas. Podemos verificar este resultado al calcular el producto de la matriz para las dos agrupaciones asociativas. Asimismo, la matriz de transformación compuesta para esta secuencia de transformaciones.

·                     Rotaciones

Dos rotaciones sucesivas que se aplican en el punto P producen la posición transformada P'=R(θ2)·R(θ1){·P}=R(θ2){· (θ1)}·P
Al multiplicar las dos matrices de rotación, podemos verificar que dos rotaciones sucesivas son aditivas

·                     Escalamiento

La siguiente figura ilustra una secuencia de transformación para producir escalación con respecto de una posición fija seleccionada (xf,f) al utilizar una función de escalación que sólo puede escalar en relación con el origen de las coordenadas



Propiedades de concatenación                    

La multiplicación de matrices es asociativa. Para tres matrices cualesquiera A, B y C, el producto matricial A·B·C se puede llevar a cabo al multiplicar primero a por B o multiplicar primero B por C:2.35.A · BC=( A· B)·C =A·( B·C)
Por tanto, podemos evaluar los productos matriciales al utilizar una agrupación asociativa ya sea de izquierda a derecha o de derecha a izquierda. Por otro lado, los productos de la transformación tal vez no sean conmutativos.



No hay comentarios.:

Publicar un comentario